Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Glob Health ; 13: 06008, 2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2230615

ABSTRACT

Background: Understanding the incidence pattern of cutaneous reactions is crucial for promoting COVID-19 vaccination. We aimed to report the global incidence pattern of, and factors associated with common cutaneous reactions related to COVID-19 vaccination in real-world settings. Methods: We searched five databases (PubMed, Web of Science, Embase, CNKI, and Wanfang) from inception to May 13, 2022, for studies reporting the incidence of common cutaneous reactions related to COVID-19 vaccines in real-world settings. The outcomes were the systematic skin reactions (rash and urticaria) and the local injection site reactions (pain, swelling, redness, and erythema). We conducted random-effects meta-analyses and explored associated factors using multi-step statistical analyses. Results: We included 35 studies and assessed 2 549 968 participants from 23 countries. The pooled incidence of overall systemic skin reactions was 3.8% (95% confidence interval (CI) = 2.4%-5.5%) with short duration (about one week). Specifically, the pooled incidence rates of rash and urticaria were 3.0% (95% CI = 2.1%-3.9%) and 1.1% (95% CI = 0.7%-1.5%), respectively. For overall local injection site reactions, the pooled incidence was 72.4% (95% CI = 65.7%-78.7%) with short duration (1 to 4.5 days). Except for local pain (72.2%, 95% CI = 65.3%-78.5%), other localized reactions had low incidence, including swelling (13.3%, 95% CI = 9.5%-17.7%), redness (11.5%, 95% CI = 5.7%-19.0%), and erythema (5.8%, 95% CI = 0.7%-15.4%). Geographically, different distribution patterns were observed for these reactions. Regarding associated factors, mRNA vaccines showed lower incidence of urticaria (P < 0.001). Asia population showed higher incidence of urticaria (P < 0.001). We observed lower incidence rates of overall local injection site reactions and pain among inactivated vaccines (P < 0.001). We found no significant difference among reactions between the first and the second dose of vaccines. Conclusions: We examined the global incidence pattern of common cutaneous reactions related to COVID-19 vaccination and found low incidence and short duration of systemic skin reactions and local injection site reactions (except for pain); discrepancies in these reactions were observed across different vaccine types. The cutaneous side effects related to COVID-19 vaccination do not seem to cause concern. Registration: PROSPERO: CRD42021258012.


Subject(s)
COVID-19 Vaccines , COVID-19 , Exanthema , Urticaria , Vaccines , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Incidence , Injection Site Reaction/epidemiology , Injection Site Reaction/etiology , Pain , Vaccination/adverse effects
2.
Risk Anal ; 2023 Jan 08.
Article in English | MEDLINE | ID: covidwho-2193200

ABSTRACT

COVID-19 has caused a critical health concern and severe economic crisis worldwide. With multiple variants, the epidemic has triggered waves of mass transmission for nearly 3 years. In order to coordinate epidemic control and economic development, it is important to support decision-making on precautions or prevention measures based on the risk analysis for different countries. This study proposes a national risk analysis model (NRAM) combining Bayesian network (BN) with other methods. The model is built and applied through three steps. (1) The key factors affecting the epidemic spreading are identified to form the nodes of BN. Then, each node can be assigned state values after data collection and analysis. (2) The model (NRAM) will be built through the determination of the structure and parameters of the network based on some integrated methods. (3) The model will be applied to scenario deduction and sensitivity analysis to support decision-making in the context of COVID-19. Through the comparison with other models, NRAM shows better performance in the assessment of spreading risk at different countries. Moreover, the model reveals that the higher education level and stricter government measures can achieve better epidemic prevention and control effects. This study provides a new insight into the prevention and control of COVID-19 at the national level.

3.
Nat Commun ; 13(1): 2135, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1805610

ABSTRACT

Chronological age is a risk factor for SARS-CoV-2 infection and severe COVID-19. Previous findings indicate that epigenetic age could be altered in viral infection. However, the epigenetic aging in COVID-19 has not been well studied. In this study, DNA methylation of the blood samples from 232 healthy individuals and 413 COVID-19 patients is profiled using EPIC methylation array. Epigenetic ages of each individual are determined by applying epigenetic clocks and telomere length estimator to the methylation profile of the individual. Epigenetic age acceleration is calculated and compared between groups. We observe strong correlations between the epigenetic clocks and individual's chronological age (r > 0.8, p < 0.0001). We also find the increasing acceleration of epigenetic aging and telomere attrition in the sequential blood samples from healthy individuals and infected patients developing non-severe and severe COVID-19. In addition, the longitudinal DNA methylation profiling analysis find that the accumulation of epigenetic aging from COVID-19 syndrome could be partly reversed at late clinic phases in some patients. In conclusion, accelerated epigenetic aging is associated with the risk of SARS-CoV-2 infection and developing severe COVID-19. In addition, the accumulation of epigenetic aging from COVID-19 may contribute to the post-COVID-19 syndrome among survivors.


Subject(s)
COVID-19 , Aging/genetics , COVID-19/complications , COVID-19/genetics , DNA Methylation , Epigenesis, Genetic , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL